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Greetings!

● Be welcome in this lecture hall!
● Please ask questions/let me know if I'm 

difficult to understand.
● This is an introduction to computer 

programming using Python.
● The order matters!

● Intended for people with no experience 
with programming.
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Is CSC 108H for me?

● CSC 148H is offered during this term.
● Instructor is Dustin Freeman.
● Assumes knowledge of basic python and object 

oriented concepts.
● Does more object oriented stuff and focuses on 

data structures.
● Lecture is R:4-6, One 2 hour lab per day.
● http://www.cdf.toronto.edu/~csc148h/summer/
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Well, how can I tell?

● CSC 148H is having a two-day ramp-up 
workshop.
● Friday May 20th 1-6 and Saturday May 28th 1-6 in 

BA3175.
● Information exists on the course website.

● Intended for people haven't taken CSC 108H 
but have done some object-oriented 
programming.

● I encourage you do show up if you're uncertain 
which course you should be taking.
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What will I be doing?

Work Weight Comment

Assignments(4) 5%,11%,11%,13%

Midterm 10%

Labs(11) 5% 0.5% each, drop the 
lowest.

Codelab(11) 5% 0.5% each, drop the 
lowest

Final 40% Need to get at least 40% 
to pass the course
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Assignments!

● They will be posted on the website.
● Due 11:59pm on due date, submitted online.
● The first assignment is meant to be small, it will 

be posted next week.
● The first assignment must be done on your 

own, remaining assignments can be done in 
pairs.

● Monogamy and polygamy okay.
● Can use discussion board and labs to meet 

people.
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But I'm busy!

● Fear not! You have 3 grace days.
● Each grace day can be used to get a 24 hour 

extension on an assignment.
● You must use grace days in increments of 1 no half 

days.
● You can stack grace days, if you wish.

● A team requires two grace days to get an 
extension.
● Each partner in a team must contribute one grace 

day.
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But I'm really busy...

● Sorry, that is the only 
late policy we have.

● Partial solutions that 
compile will get credit.

● If there's an 
emergency contact 
me as soon as 
possible.
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Exams!

● A midterm and a final.
● No, I don't know when or where either are yet.

● When I find out, I will send out an e-mail and post it 
on the website.

● They will be closed book written tests.
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Labs!

● Labs are done with a partner that is separate 
from your assignment partner(s).

● They are the tutorials that you sign up for on 
ROSI.

● They start next week.
● The room assignments will be posted Tuesday.

● Not everyone has signed up for a lab yet! Please 
remedy this!
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Codelab!

● Weekly online exercises due Tuesdays at 
11:59pm.

● They will generally be posted Thursday after 
lecture.

● You must register online www.turingscraft.com 
with the registration code TORO-5979-KABQ-9.

● The course website has more information.

http://www.turingscraft.com/
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The Book.

● Practical 
Programming: An 
Introduction to 
Computer Science 
Using Python.

● Can get it cheaply on 
Amazon.

● Authors from the 
department.
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Getting Help.

● Office Hours.
● We're deciding on these right now!

● Can ask for help from your TA during labs.
● Course Discussion board.
● Undergraduate Help Centre, BA 2200 4-6, 

Monday-Thursday.
● Only 5-6 next week.
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But I really need help!

● You can always e-
mail me.
● Please have CSC 108 

in the title.

● Please check the 
discussion board first.
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Academic Offences

● You should do all the work that you submit 
(work by your assignment partner counts).

● Never look at another teams works.
● Never show another team your work.
● Applies to all drafts and partial solutions.
● Discuss how to solve an assignment only with 

course staff.
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Administrivia that you can do!

● Read the course information sheet.
● Make sure you can find the website and 

discussion board.
● Buy textbook.
● Look up your CDF username.
● Register for Codelab and do the first set of 

exercises.
● If you're working on your own machine, install 

the software under Python on the course 
website.
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Break, the first.
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What is CSC 108H about?

● Learning how to program.
● We use Python for this, but the concept apply to 

most languages, and even scripts and macros.
● Will develop a solid set of programming tools.

● Being able to take human problems, and use 
programming to solve them.

● Have a better sense of what computer science 
is about.

– See how computer science can be applied to climate 
modelling, bioinformatics, medical science,etc.
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Why Programming?

● Powerful and general.

● Can hide a poem in a 
picture.

● Can remove redeye.

● Allows people to 
communicate securely.

● Can find optimal paths in 
huge maps.
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What is programming?

● A program is essentially a series of instructions.
● Like a recipe, or a vague diagram from Ikea.

● So why not use English?
● Turns out English isn't much better than Ikea 

diagrams.
● It's too vague and dependent on context.

– “Eats shoots and leaves”.

● We need a language that is unambiguous.
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Python!

● The answer to our dreams of unambiguous 
language.
● Well, in a narrow context.

● Python is unambiguous.
● Of course, what that means is that you need to be 

very precise.
● Think of it as a friend who will never let any small 

detail go.

● Python is the language, but what reads it?
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Wing

● IDE (Integrated Development Enviroment)
● A set of tools used to help us develop code.
● For now we can think of it as the program that 

runs our python code for us.
● A free version is linked from the website.
● Let's see what it looks like.
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Python as a Calculator

● The shell will interpret lines of python that we 
feed it.
● Basic mathematical operations are part of python.
● So we can use python as a calculator.
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Python isn't very good at calculating.

● You have multiplication, addition, subtraction, 
division and powers (*,+,-,/,**) but sometimes 
the answers are weird.

● If you give python integers, it will assume that 
you want integers back.

● For fractions, one uses floating point numbers.
● Python interprets any number with a decimal in it as 

a float.

● Floats are only approximations of real numbers.



May 19 2011  

Python comes with a lot of stuff.

● Beyond basic arithmetic there are lots of 
prebuilt functions in Python.

● Some math ones like max and abs.
● But also other useful ones like dir and help

● Dir returns a list of functions that are available.
● Help returns information about a function or module.
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Variables.

● A variable is a name that refers to a value.
● Variables let us store and reuse values in 

several places.
● But to do this we need to define the variable, 

and then tell it to refer to a value.
● We do this using an assignment statement.
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Assignment Statements.

● Form: variable = expression
● An expression is a legal sentence in python that can 

be evaluated.
● So far we've put in math expressions into the shell 

and seen them be evaluated to single numbers.

● What it does:
● 1. Evaluate the expression on the RHS.(This value 

is a memory address)
● 2. Store the memory address in the variable on the 

LHS.
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Assignment Statements.

● What it does:
● 1. Evaluate the expression on the RHS.(This value 

is a memory address)
● 2. Store the memory address in the variable on the 

LHS.

● What this means is that a variable is a name 
and a memory address. The name points to a 
memory address where the value is stored.

● This means that variables in python behave 
fundamentally differently than variables in math. 
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Break, the second.



May 19 2011  

Functions

● We already saw that python has a lot of built-in 
functions.
● But what if we want to define our own functions?
● Python allows that.

● First let's think about what it means to define a 
function in math.
● Consider f(x)=x^2, and the values of f(3), f(5).

● In python we can do the same with:
● def f(x):

      return x**2
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Functions

● A function definition has the form:

def function_name(parameters):
block

● def is a python keyword; it cannot be used for 
naming functions or variables.

● A parameter of a function is a variable. A function 
can have any number of parameters, including 0.

● A block is a sequence of legal python statments.
– A block must be indented.

● If the block contains the keyword return, it returns a 
value; otherwise it returns the special value None.
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Functions

● Defining a function is different from calling it.
● Think about creating a recipe, vs actually 

cooking it.
● When we define a function, we essentially say, 

'here how we can make a sweet cake'.
● When we call it with some parameters, we 

actually make the cake with those 'ingredients'.
● But we can repeatedly call functions, so they 

allow us to have our cake and eat it too.
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Naming Conventions.

● Naming rules and conventions apply to 
functions, variables and any other kind of name 
that you will see.

● Must start with a letter or underscore.
● Can include letters, numbers, and underscores 

and nothing else.
● Case matters, so age is not same name as 

Age.
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Naming Conventions.

● Python Convention: pothole_case
● That is, all lower case, and underscores seperate 

words.

● CamelCase is sometimes seen, but not for 
functions and variables.
● That is, capital letters separate words.

● Single letters are rarely capitalised.
● These conventions are important for legibility 

which factors into maintaining code.
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Types

● Every Python value has a type that describes 
what sort of value it is and how it behaves.
● Recall 4 vs 4.0

● There is a built in function type that returns the 
type of an expression.
● So far we've seen ints and floats.

– And booleans very briefly, but we'll cover the next week.

● Variables also have types, their type is the type 
of the expression they refer to.
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Home Stretch

● To finish off, we'll see how to create a 
somewhat useful program quite quickly.
● Some of the stuff we'll be using is a bit advanced, 

so don't worry if you don't completely follow 
everything.

● A lot of people create external modules that 
extend the capabilities of python.
● We'll be using the media module, which was 

created by UofT students.
● To use a module we import it with import 

module_name
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Media Module

● The basic function of the Media Module is to 
show pictures.
● pic = media.load_picture(filename) loads an image 

into pic.
● media.show(pic) shows the picture.

● We want to use this to design a program that 
can take a picture, and make it appear as if it 
was taken at sunset.
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How do we do that?

● Well, we take what we know about image files.
● Basically we know that images files are really 

many tiny coloured squares called pixels.
● Since we have RGB monitors, this means each 

colour is a combination of red, green and blue.
● It turns out that the pixel colours are specified 

by 3 numbers between 0 and 255 that say how 
much red green and blue each pixel has.
● So (255,0,0) is red, while (0,255,0) is green and so 

on.
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Leveraging our Knowledge.

● So we know about pixels.
● What do we know about sunset?

● Colours tend to be redder and less blue or green.

● So if we could change the colour values of each 
pixel accordingly, we'd probably do pretty well.
● So let's try decreasing blue and green by 70%, 
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Pseudo-Code version.

● We want something like:
● For every pixel,

get the (blue/green) component of that pixel.

Reduce this component by 30%

set the (blue/green) component of that pixel to the 
new value.

● We're in luck, as there's a way to quickly go 
over all the pixels.
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A General Approach

● While admittedly all planned beforehand, the 
way we approached the problems was in three 
stages.
● Design: We thought about what the right approach 

was before writing any code.
● Code: Once we thought we had a good idea, we 

wrote the code.
● Verify: we tested our code to make sure we weren't 

making any dumb mistakes.
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