
CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

May 19 2011

Greetings!

● Be welcome in this lecture hall!
● Please ask questions/let me know if I'm

difficult to understand.
● This is an introduction to computer

programming using Python.
● The order matters!

● Intended for people with no experience
with programming.

May 19 2011

Is CSC 108H for me?

● CSC 148H is offered during this term.
● Instructor is Dustin Freeman.
● Assumes knowledge of basic python and object

oriented concepts.
● Does more object oriented stuff and focuses on

data structures.
● Lecture is R:4-6, One 2 hour lab per day.
● http://www.cdf.toronto.edu/~csc148h/summer/

May 19 2011

Well, how can I tell?

● CSC 148H is having a two-day ramp-up
workshop.
● Friday May 20th 1-6 and Saturday May 28th 1-6 in

BA3175.
● Information exists on the course website.

● Intended for people haven't taken CSC 108H
but have done some object-oriented
programming.

● I encourage you do show up if you're uncertain
which course you should be taking.

May 19 2011

What will I be doing?

Work Weight Comment

Assignments(4) 5%,11%,11%,13%

Midterm 10%

Labs(11) 5% 0.5% each, drop the
lowest.

Codelab(11) 5% 0.5% each, drop the
lowest

Final 40% Need to get at least 40%
to pass the course

May 19 2011

Assignments!

● They will be posted on the website.
● Due 11:59pm on due date, submitted online.
● The first assignment is meant to be small, it will

be posted next week.
● The first assignment must be done on your

own, remaining assignments can be done in
pairs.

● Monogamy and polygamy okay.
● Can use discussion board and labs to meet

people.

May 19 2011

But I'm busy!

● Fear not! You have 3 grace days.
● Each grace day can be used to get a 24 hour

extension on an assignment.
● You must use grace days in increments of 1 no half

days.
● You can stack grace days, if you wish.

● A team requires two grace days to get an
extension.
● Each partner in a team must contribute one grace

day.

May 19 2011

But I'm really busy...

● Sorry, that is the only
late policy we have.

● Partial solutions that
compile will get credit.

● If there's an
emergency contact
me as soon as
possible.

May 19 2011

Exams!

● A midterm and a final.
● No, I don't know when or where either are yet.

● When I find out, I will send out an e-mail and post it
on the website.

● They will be closed book written tests.

May 19 2011

Labs!

● Labs are done with a partner that is separate
from your assignment partner(s).

● They are the tutorials that you sign up for on
ROSI.

● They start next week.
● The room assignments will be posted Tuesday.

● Not everyone has signed up for a lab yet! Please
remedy this!

May 19 2011

Codelab!

● Weekly online exercises due Tuesdays at
11:59pm.

● They will generally be posted Thursday after
lecture.

● You must register online www.turingscraft.com
with the registration code TORO-5979-KABQ-9.

● The course website has more information.

http://www.turingscraft.com/

May 19 2011

The Book.

● Practical
Programming: An
Introduction to
Computer Science
Using Python.

● Can get it cheaply on
Amazon.

● Authors from the
department.

May 19 2011

Getting Help.

● Office Hours.
● We're deciding on these right now!

● Can ask for help from your TA during labs.
● Course Discussion board.
● Undergraduate Help Centre, BA 2200 4-6,

Monday-Thursday.
● Only 5-6 next week.

May 19 2011

But I really need help!

● You can always e-
mail me.
● Please have CSC 108

in the title.

● Please check the
discussion board first.

May 19 2011

Academic Offences

● You should do all the work that you submit
(work by your assignment partner counts).

● Never look at another teams works.
● Never show another team your work.
● Applies to all drafts and partial solutions.
● Discuss how to solve an assignment only with

course staff.

May 19 2011

Administrivia that you can do!

● Read the course information sheet.
● Make sure you can find the website and

discussion board.
● Buy textbook.
● Look up your CDF username.
● Register for Codelab and do the first set of

exercises.
● If you're working on your own machine, install

the software under Python on the course
website.

May 19 2011

Break, the first.

May 19 2011

What is CSC 108H about?

● Learning how to program.
● We use Python for this, but the concept apply to

most languages, and even scripts and macros.
● Will develop a solid set of programming tools.

● Being able to take human problems, and use
programming to solve them.

● Have a better sense of what computer science
is about.

– See how computer science can be applied to climate
modelling, bioinformatics, medical science,etc.

May 19 2011

Why Programming?

● Powerful and general.

● Can hide a poem in a
picture.

● Can remove redeye.

● Allows people to
communicate securely.

● Can find optimal paths in
huge maps.

May 19 2011

What is programming?

● A program is essentially a series of instructions.
● Like a recipe, or a vague diagram from Ikea.

● So why not use English?
● Turns out English isn't much better than Ikea

diagrams.
● It's too vague and dependent on context.

– “Eats shoots and leaves”.

● We need a language that is unambiguous.

May 19 2011

Python!

● The answer to our dreams of unambiguous
language.
● Well, in a narrow context.

● Python is unambiguous.
● Of course, what that means is that you need to be

very precise.
● Think of it as a friend who will never let any small

detail go.

● Python is the language, but what reads it?

May 19 2011

Wing

● IDE (Integrated Development Enviroment)
● A set of tools used to help us develop code.
● For now we can think of it as the program that

runs our python code for us.
● A free version is linked from the website.
● Let's see what it looks like.

May 19 2011

Python as a Calculator

● The shell will interpret lines of python that we
feed it.
● Basic mathematical operations are part of python.
● So we can use python as a calculator.

May 19 2011

Python isn't very good at calculating.

● You have multiplication, addition, subtraction,
division and powers (*,+,-,/,**) but sometimes
the answers are weird.

● If you give python integers, it will assume that
you want integers back.

● For fractions, one uses floating point numbers.
● Python interprets any number with a decimal in it as

a float.

● Floats are only approximations of real numbers.

May 19 2011

Python comes with a lot of stuff.

● Beyond basic arithmetic there are lots of
prebuilt functions in Python.

● Some math ones like max and abs.
● But also other useful ones like dir and help

● Dir returns a list of functions that are available.
● Help returns information about a function or module.

May 19 2011

Variables.

● A variable is a name that refers to a value.
● Variables let us store and reuse values in

several places.
● But to do this we need to define the variable,

and then tell it to refer to a value.
● We do this using an assignment statement.

May 19 2011

Assignment Statements.

● Form: variable = expression
● An expression is a legal sentence in python that can

be evaluated.
● So far we've put in math expressions into the shell

and seen them be evaluated to single numbers.

● What it does:
● 1. Evaluate the expression on the RHS.(This value

is a memory address)
● 2. Store the memory address in the variable on the

LHS.

May 19 2011

Assignment Statements.

● What it does:
● 1. Evaluate the expression on the RHS.(This value

is a memory address)
● 2. Store the memory address in the variable on the

LHS.

● What this means is that a variable is a name
and a memory address. The name points to a
memory address where the value is stored.

● This means that variables in python behave
fundamentally differently than variables in math.

May 19 2011

Break, the second.

May 19 2011

Functions

● We already saw that python has a lot of built-in
functions.
● But what if we want to define our own functions?
● Python allows that.

● First let's think about what it means to define a
function in math.
● Consider f(x)=x^2, and the values of f(3), f(5).

● In python we can do the same with:
● def f(x):

 return x**2

May 19 2011

Functions

● A function definition has the form:

def function_name(parameters):
block

● def is a python keyword; it cannot be used for
naming functions or variables.

● A parameter of a function is a variable. A function
can have any number of parameters, including 0.

● A block is a sequence of legal python statments.
– A block must be indented.

● If the block contains the keyword return, it returns a
value; otherwise it returns the special value None.

May 19 2011

Functions

● Defining a function is different from calling it.
● Think about creating a recipe, vs actually

cooking it.
● When we define a function, we essentially say,

'here how we can make a sweet cake'.
● When we call it with some parameters, we

actually make the cake with those 'ingredients'.
● But we can repeatedly call functions, so they

allow us to have our cake and eat it too.

May 19 2011

Naming Conventions.

● Naming rules and conventions apply to
functions, variables and any other kind of name
that you will see.

● Must start with a letter or underscore.
● Can include letters, numbers, and underscores

and nothing else.
● Case matters, so age is not same name as

Age.

May 19 2011

Naming Conventions.

● Python Convention: pothole_case
● That is, all lower case, and underscores seperate

words.

● CamelCase is sometimes seen, but not for
functions and variables.
● That is, capital letters separate words.

● Single letters are rarely capitalised.
● These conventions are important for legibility

which factors into maintaining code.

May 19 2011

Types

● Every Python value has a type that describes
what sort of value it is and how it behaves.
● Recall 4 vs 4.0

● There is a built in function type that returns the
type of an expression.
● So far we've seen ints and floats.

– And booleans very briefly, but we'll cover the next week.

● Variables also have types, their type is the type
of the expression they refer to.

May 19 2011

Home Stretch

● To finish off, we'll see how to create a
somewhat useful program quite quickly.
● Some of the stuff we'll be using is a bit advanced,

so don't worry if you don't completely follow
everything.

● A lot of people create external modules that
extend the capabilities of python.
● We'll be using the media module, which was

created by UofT students.
● To use a module we import it with import

module_name

May 19 2011

Media Module

● The basic function of the Media Module is to
show pictures.
● pic = media.load_picture(filename) loads an image

into pic.
● media.show(pic) shows the picture.

● We want to use this to design a program that
can take a picture, and make it appear as if it
was taken at sunset.

May 19 2011

How do we do that?

● Well, we take what we know about image files.
● Basically we know that images files are really

many tiny coloured squares called pixels.
● Since we have RGB monitors, this means each

colour is a combination of red, green and blue.
● It turns out that the pixel colours are specified

by 3 numbers between 0 and 255 that say how
much red green and blue each pixel has.
● So (255,0,0) is red, while (0,255,0) is green and so

on.

May 19 2011

Leveraging our Knowledge.

● So we know about pixels.
● What do we know about sunset?

● Colours tend to be redder and less blue or green.

● So if we could change the colour values of each
pixel accordingly, we'd probably do pretty well.
● So let's try decreasing blue and green by 70%,

May 19 2011

Pseudo-Code version.

● We want something like:
● For every pixel,

get the (blue/green) component of that pixel.

Reduce this component by 30%

set the (blue/green) component of that pixel to the
new value.

● We're in luck, as there's a way to quickly go
over all the pixels.

May 19 2011

A General Approach

● While admittedly all planned beforehand, the
way we approached the problems was in three
stages.
● Design: We thought about what the right approach

was before writing any code.
● Code: Once we thought we had a good idea, we

wrote the code.
● Verify: we tested our code to make sure we weren't

making any dumb mistakes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

